SELECTING HIGHER-SPEED RAIL CORRIDORS BY CONSIDERING IMPACTS TO THE ENVIRONMENT, LAND USE, **AND ENGINEERING** REQUIREMENTS

Jon Mueller GEO 580 Spring 2011

Outline

- Motivation
- Research goals
- Study area
- Methodology
- Results
- Discussion
- Future Work

Renewed Interest In Rail

- Urban renewal
- Mode choice
- Efficient
- Amtrak ridership
- Funding
- Highways

www.amtrak.com

Where Should It Be Built?

Current alignments

- Less expensive
- Capacity
- Engineering
- New alignments
 - Expensive
 - Higher speeds
 - Ridership

How Do You Decide?

- Involves several stakeholders
- National Environmental Protection Act (NEPA)
- Environmental Impact Statement (EIS)
 - Rigorous process
 - Oregon example

New Methods

- Environmental Corridor Optimization and Planning Alignments (ECO-PAL) toolkit
 USDOT
 - National Consortium for Remote Sensing in Transportation
- Goal: Utilize remote sensing data to streamline corridor planning process
 - Economic, environmental, historical, engineering, land use

Research Goals

- Build toolkit for selecting rail alignments
- Oregon higher-speed rail project
- Research question:
 - Which choice of alignment has the least overall impact when considering land use, engineering requirements, and the environment?

Cascades Corridor

http://www.fra.dot.gov

Study Area

Methodology

- Gather data
- Create layers
- Combine layers
- Rank layers
- Combine layers to create models
- Combine to create overall model

Data

- USGS: National Map Seamless Server
- 2006 National Land Cover Data
 - Land use
 - 30m resolution
- Arc Second National Elevation Dataset
 - DEM
 - ~33m resolution

Analysis Model

Results: Land Use

Low Impact Medium High Impact Impact

Land Use Impacts

Results: Environment

Results: Engineering

Engineering Impacts 600 500 400 300 200 100 0 Medium Impact Low Impact High Impact

Results: Overall

Discussion

- Low DEM resolution
- Roads classified as developed
- Is it complete?
- Are rankings accurate?
- Future work

Future Work

- Make a Multi-Criteria Decision Making (MCDM) tool
 - Analytical Hierarchy Process (AHP)
- Develop an economic impact model
- Identify hazards and assess risk
- Incorporate Federal Railroad Administration track standards
 - Speed, curvature

Literature

- Nobrega, R.A.A., O'Hara, C., Stich, B. (2011), "Top-Down Landscape-Based Approach Toward The Assessment And Ranking Of Watershed And Wetland Impacted By Transportation Corridors."<u>90th Annual Meeting of</u> <u>the Transportation Research Board</u>. Washington, D.C.
- Nobrega, R.A.A., O'Hara, C. (2011), "Evaluating the Design of the Streamlined GIS-based Transportation Corridors" <u>90th Annual Meeting of</u> <u>the Transportation Research Board</u>. Washington, D.C.

Questions?